Andreas Romaine has identified two potential molecular targets for future heart failure therapies.


  1. Integrin α11 is highly upregulated following aortic banding.

  2. Both syndecan-4 and integrin α11 are required to induce cardiac hypertrophic remodelling.
  3. A novel method of aortic banding results in cardiac hypertrophy with very low mortality.


Thesis: Proteoglycans and integrins as key regulators of cardiac remodelling in response to increased left ventricular afterload
Candidate: Andreas Romaine
Time: February 13, 2020 at 13:15
Place: Oslo University Hospital Ullevål, Kreftsenteret: Ground floor auditorium
Link to university website


(1) High levels of the cell surface mechanosensor integrin α11 leads to cardiac remodelling. Transgenic mice with high integrin α11 levels developed left ventricular hypertrophy and cardiac fibrosis within six months. Compared to wild type mice, intracellular hypertrophic signalling and secretion of soluble factors that increase collagen production in the heart were evident in the transgenic mice.

Moreover, the genetic expression of integrin α11 was markedly increased in cardiac cells from wild type mice following aortic banding.

(3) The proteoglycan syndecan-4, another cell surface mechanosensor, prevents degradation of osteopontin, which might protect the heart from adverse remodelling. Both osteopontin and syndecan-4 were upregulated in mice subjected to aortic banding. Syndecan-4 bound to osteopontin and protected it from being cleaved by thrombin. Thrombin-cleaved osteopontin induces cardiac fibrosis.

However, in the later phases of remodelling, syndecan-4 is shed and contributes to progression of cardiac fibrosis.

(4) Lack of integrin α11 and syndecan-4 protects against adverse remodelling following aortic banding. Following pressure overload in mice, both syndecan-4 and integrin α11 were required to induce cardiac hypertrophic remodelling.

(2) Romaine and co-workers also developed a novel model for increased mechanical strain on mice heart. By using o-rings with fixed inner diameter, the researches established a model of high precision aortic constriction, resulting in hypertrophy within one week and very low mortality.


(1) Romaine, A., Sørensen, I. W., Zeltz, C., Lu, N., Erusappan, P. M., Melleby, A. O., Zhang, L., Bendiksen, B., Robinson, E. L., Aronsen, J. M., Herum, K. M., Danielsen, H. E., Sjaastad, I., Christensen, G., & Gullberg, D. (2018). Overexpression of integrin α11 induces cardiac fibrosis in mice. Acta Physiologica222(2), e12932.

(2) Melleby, A. O., Romaine, A., Aronsen, J. M., Veras, I., Zhang, L., Sjaastad, I., Lunde, I. G., & Christensen, G. (2018). A novel method for high precision aortic constriction that allows for generation of specific cardiac phenotypes in mice. Cardiovascular research114(12), 1680-1690.

(3) Herum, K. M., Romaine, A., Wang, A., Melleby, A. O., Strand, M. E., Pacheco, J., Braathen, B., Dunér, P., Tønnessen, T., Lunde, I. G., Sjaastad, I., Brakebusch, C., McCulloch, A. D., Gomez, M. F., Carlson, C. R., & Christensen, G. (2020). Syndecan‐4 Protects the Heart From the Profibrotic Effects of Thrombin‐Cleaved Osteopontin. Journal of the American Heart Association9(3), e013518.

Latest News

May 28, 2024

Photos from the workshop on Advancing Ischemic Heart Disease Research

Approximately 25 researchers met in Trondheim for the new workshop called “Advancing Ischemic Heart Disease…

Read more
May 14, 2024

Photos from Course in Cardiac Mechanics 2024

Cardiac researchers and clinical cardiologists need to know key concepts and terms for measuring and describing…

Read more
April 28, 2024

Professor Kristina H. Haugaa receives the 2024 Heart Research Award

The Norwegian Health Association has awarded the prestigious 2024 Heart Research Award (Hjerteforskningsprisen) to professor Kristina…

Read more
September 08, 2023

Annual Symposium 2023: Winners and photos

More than 100 participants attended the 21st Annual Norwegian Symposium on Heart Research, hosted by…

Read more
Norheart uses cookies for analytical purposes, content and ads customisation, and to further develop our services.
Learn more
Show again