In her PhD thesis, Kathrine Knai has looked at oscillations in ECG, blood pressure and glucose signals, aiming to implement new knowledge in tools for clinical decision making.
MAIN RESULTS:
THESIS DEFENCE:
Thesis: Oscillations in biological signals
Candidate: Kathrine Knai
Time: October 16, 2020 at 12:15
Place: Online-based solution, due to the covid-19 situation
Link to university website (in Norwegian)
SUMMARY:
(1) The Hilbert–Huang transform shows high ability to analyze time-changing properties of frequency components of heart rate variability from blood pressure signals. Thus, it can identify instantaneous frequency shifts and provide new insight into the nature these kinds of data.
The study compares the Hilbert-Huang transform with the power spectrum and continuous wavelet transform in analysis of a five-minute blood pressure signal. Power spectrum does not identify slow oscillations, whereas continuous wavelet transform has lower time resolution than the Hilbert-Huang transform.
(2) Knai’s second paper includes the first report of glucose oscillations in the 50–100 s range. Four pigs under general anaesthesia were included in the experiments, which explored high-resolution blood glucose time-series sampled using a novel continuous intravascular sensor. In all time series, the researches found several interesting oscillatory components, especially in the 5000–10000 s, 500–1000 s, and 50–100 s regions. The origin of these oscillations and their role in overall blood glucose regulation remains unknown.
(3) Cardiac surgery does not lead to loss of oscillatory components in circulatory signals, contrary to the researchers’ hypothesis. Loss of complexity is seen as a consequence of several diseases and aging, and oscillatory components of circulatory signals are linked to the system’s overall complexity. Heart rate variability is known to decrease after cardiac surgery. However, oscillatory components did not represent any reduction in the overall complexity.
To study this, Knai and co-workers extracted three time series from recordings of systolic blood pressure, heart rate and amplitude of the electrocardiogram’s R‐wave in eight patients undergoing cardiac surgery.
(4) Oscillations from ECG signals in 20 healthy individuals were analyzed, and the researchers found slow oscillation in this data. They corresponded to known oscillations in blood pressure and heart rate.
REFERENCES:
(1) Knai, K., Kulia, G., Molinas, M., & Skjaervold, N. K. (2017). Instantaneous Frequencies of Continuous Blood Pressure a Comparison of the Power Spectrum, the Continuous Wavelet Transform and the Hilbert–Huang Transform. Advances in Data Science and Adaptive Analysis, 9(04), 1750009.
(2) Skjaervold, N. K., Knai, K., & Elvemo, N. (2018). Some oscillatory phenomena of blood glucose regulation: An exploratory pilot study in pigs. PloS one, 13(4), e0194826.
(3) Knai, K., Aadahl, P., & Skjaervold, N. K. (2020). Cardiac surgery does not lead to loss of oscillatory components in circulatory signals. Physiological Reports, 8(9), e14423.
(4) Knai, K., & Skjaervold, N. K. R-wave amplitude exhibits slow oscillations. An exploratory pilot study in healthy individuals. Currently unpublished
- priority at NORHEART events
- visibility to other cardiovascular researchers
- e-mail updates and Newsletter
- membership free of charge
Join the Friends of NORHEART mailing list if you want to receive our newsletter without membership.
NORHEART is excited to launch our brand new LinkedIn page. On this page you will…
More than 100 participants attended the 22nd Annual Norwegian Symposium on Heart Research, hosted by…
Approximately 25 researchers met in Trondheim for the new workshop called “Advancing Ischemic Heart Disease…
Cardiac researchers and clinical cardiologists need to know key concepts and terms for measuring and describing…